Equivariant autoequivalences for finite group actions
نویسندگان
چکیده
منابع مشابه
Equivariant LS-category for finite group actions
In this paper we study the equivariant category of finite group actions. We introduce the basic filtration for the orbit space of the action. In terms of this filtration we give upper and lower estimates of the equivariant category. The idea for the proof is parallel to the approach in [3] for compact-Hausdorff foliations. We give examples to show that both the upper and lower bounds are realiz...
متن کاملEquivariant Periodicity for Compact Group Actions
Probably the most basic structural phenomenon of high dimensional topology is Siebenmann’s periodicity theorem [3] (as amended by Nicas [5]), which asserts that the manifolds homotopy equivalent to M are in a one-to-one correspondence with (a subset of, because of nonresolvable honology manifolds [1]) those homotopy equivalent to M×D. The main goal of this paper is to show the following extensi...
متن کاملClassification Theorems for Finite Group Actions Using the Equivariant Cuntz Semigroup
We classify actions of finite groups on some class of C*-algebras with the Rokhlin property in terms of the Cuntz semigroup. An obstruction is obtained for the Cuntz semigroup of a C*-algebra allowing such an action. We also classify certain inductive limit actions of finite groups on a class of C*-algebras containing AI-algebras. This classification is done via the equivariant Cuntz semigroup.
متن کاملEquivariant classification of Gorenstein open log del Pezzo surfaces with finite group actions
We classify equivariantly Gorenstein log del Pezzo surfaces with boundaries at infinity and with finite group actions such that the quotient surface modulo the finite group has Picard number one. We also determine the corresponding finite groups. Better figures are available upon request.
متن کاملEquivariant cobordism for torus actions
We study the equivariant cobordism groups for the action of a split torus T on varieties over a field k of characteristic zero. We show that for T acting on a variety X , there is an isomorphism ΩT ∗ (X) ⊗Ω∗(BT ) L ∼= −→ Ω∗(X). As applications, we show that for a connected linear algebraic group G acting on a k-variety X , the forgetful map ΩG ∗ (X) → Ω∗(X) is surjective with rational coefficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2007
ISSN: 0001-8708
DOI: 10.1016/j.aim.2007.05.002